
J. Fluid Mech. (1998), �ol. 369, pp. 23–48. Printed in the United Kingdom

# 1998 Cambridge University Press

23

The influence of rotation on shelf convection

By P. JACOBS  G. N. IVEY

Centre for Water Research, The University of Western Australia, Nedlands, Perth,
Western Australia 6907

e-mail : jacobsp!cwr.uwa.edu.au

(Received 10 October 1997 and in revised form 27 March 1998)

A series of laboratory experiments was conducted to study the flows and exchange
processes generated by turbulent convection in a shallow fluid with a combination of
a shelf and slope topography in the presence of rotation. For convenience, heat loss at
the ocean surface was modelled by heating from below with a buoyancy flux B

!
applied

to a circular portion (of radius R) of the base of a cylindrical tank, rotating with
angular frequency f. The working volume was closed by an inverted model of a shelf
and slope topography (with slope angle φ), creating a fluid height H between the forced
surface and the shelf. After the initiation of the buoyancy forcing, the average
temperature in the actively convecting region initially increases linearly with time but
slows down once a lateral heat flux is generated by baroclinic instability at the edge of
the convecting region. The wavelength of this instability is described by λ¯ (5.9³0.3)
R

D
, with R

D
the Rossby radius of deformation, defined by (g«H )"/#}f, where g« is the

reduced gravity based on the density difference between the convecting and ambient
fluids. A steady state is eventually reached when the lateral heat flux balances the
(vertical) heat flux due to the forcing. The results differ from previous work in either
unbounded or in constant-depth environments. It is shown that the steady-state
density anomaly between the convecting and ambient regions is given by g!

f
¯

(1.6³0.2) (B
!
f )"/# (R}H ), while the time to reach this steady state is τ¯ (3.1³0.5)

( f}B
!
)"/# R. The eddy velocity, characterizing the lateral exchange process, is given by

�
flux

E 1.2 (B
!
}f )"/#. These results are consistent with the description of the lateral

exchange process by eddy diffusion (rather than advection). Comparisons are made
between the experimental results and field observations of convection events.

1. Introduction

Intense cooling of the surface layers of the ocean due to strong, cold winds occurs
in high-latitude seas, for example the Labrador Sea in the Arctic (Clarke & Gascard
1983) and the Weddell Sea in the Antarctic (Gascard 1991), as well as in mid-latitude
seas, of which observations in the Mediterranean Sea are best documented (Leaman
& Schott 1991 and Schott et al. 1996). In response to this intense cooling, large-scale
convectively driven flows form in the surface layers. Initially, the effects of the surface
cooling stay confined to the region underneath the portion of the surface which is being
cooled, forming a well-mixed layer of denser water (this can also be achieved by brine
rejection if the cooling is so strong that ice is being formed on the surface). However,
if the atmospheric conditions that cause the surface cooling persist for long enough (in
the order of several days), horizontal exchange processes will be generated to
redistribute the colder water. Previously reported observations and modelling efforts
have shown that, in either a constant-depth ocean or in an unbounded but stratified
environment, this horizontal exchange is dominated by the baroclinic instability of a
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rim current which forms around the periphery of the well-mixed region (Gascard &
Clarke 1983; Coates, Ivey & Taylor 1995; Ivey, Taylor & Coates 1995; Raasch &
Etling 1997; and the recent review by Maxworthy 1997). The horizontal scale of this
instability (the ‘eddy’ size) is of the order of the Rossby radius, given in the
homogeneous case by R

D
¯ (g«H )"/#}f, where g«¯ g ∆ρ}ρ and ∆ρ is the density

anomaly between the mixed layer and the ambient, H is the height of the water column
and f is the Coriolis parameter. The instability process will eventually result in a
geostrophically turbulent flow field, in which dense fluid is transported away from the
convecting region by eddies which pinch off from the forced region and travel
throughout the entire domain. A steady state can be reached in the production of
convectively stirred fluid when the horizontal heat flux associated with the eddy
processes balances the heat loss through the surface. The density anomaly in this steady
state, which determines the water mass characteristics of the dense outflow, can depend
on the strength of the buoyant forcing, as well as on some geometrical parameters and
possibly also the strength of the background rotation.

From laboratory models of isolated convection in a constant-depth ocean, Brickman
(1995) and Narimousa (1997) both concluded that the steady-state density anomaly
between the convecting and ambient regions is independent of the background
rotation. However, Brickman (1995) also pointed out that the horizontal scale of the
baroclinic eddies, relative to the size of the forcing region, influences the time it takes
to reach a temperature equilibration in the convecting region. This, in turn, will
determine the final value of the density anomaly in the core of this region, defined as
that portion of the convecting region initially unaffected by the eddying motion. Since
the size of the eddies, set by the value of the Rossby radius of deformation R

D
, is a

function of the rotation rate, the latter parameter can thus influence the steady-state
density anomaly indirectly. Jones & Marshall (1993) and Chapman & Gawarkiewicz
(1997) indeed found such a dependency in constant-depth numerical models of isolated
convection. It is therefore not clear why this dependency has not been recovered in the
previously mentioned laboratory models.

If the intense cooling occurs over the surface of a relatively shallow coastal sea, then
the presence of the adjacent continental slope will modify the strength and possibly also
the lateral position of the baroclinic eddies (e.g. Mory, Stern & Griffiths 1987).
Gawarkiewicz & Chapman (1995) described two important effects of the bottom slope:
first, it introduces a background potential vorticity gradient, which allows isolated
eddies to follow isobaths with the shallower water on their right (in the northern
hemisphere) ; second, there is a downslope component of the gravitational acceleration.
Variation of the steepness of the slope in the model of Gawarkiewicz & Chapman (1995)
led to the conclusion that this latter effect was the dominant one, since for steeper
slopes the offshore movement of the eddies was more rapid. This also resulted in
smaller values of the steady-state density anomaly. It is clear that the presence (and
steepness) of a sloping bottom can thus affect the exchange of heat and subsequently
any tracer transport between the convecting fluid and the ambient fluid offshore.

This paper will address the response of an initially unstratified ocean with shelf and
slope topography to a constant surface buoyancy forcing. The main goal of this study
is to quantify the role of background rotation on the density and velocity distributions
characterizing the convective and lateral mixing processes in such a geometry. In §2,
the description of the dynamics of this process leads to some predictions regarding the
average temperature in the convecting region, as well as scalings for velocity fields and
instability patterns. The predictions arising from these arguments have been tested in
a series of laboratory experiments, the setup of which is described in §3. The results of
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this physical model are discussed in §4, while in §5 comparisons are made with some
field data, and the summary and conclusions are in §6.

2. Dynamical considerations

Consider the situation where we apply a buoyancy forcing B
!

per unit area (in
m# s−$) over a circular region with radius R (m) and total depth H (m). The buoyancy
flux can be related to a heat flux F through B

!
¯ gαF}ρC

P
, with α the thermal

expansion coefficient and C
P

the specific heat at constant pressure. As previous studies
have shown, the Rossby number Ro defined as

Ro¯ 0 B
!

f $H #
1"/$ (1)

is a convenient dimensionless group to characterize the convective processes (see e.g.
Coates et al. 1995). Ro can be interpreted as the ratio of the characteristic time scale
for rotationally controlled turbulence (i.e. 1}f ) and the time scale for convection over
a depth H in the absence of rotation (i.e. H}(B

!
H )"/$). Equally it can be interpreted as

the square of the ratio of density differences between the convective mixed fluid and the
surrounding waters in the non-rotating and rotating cases, given by

g!
non-rot

C (B#

!
}H )"/$ and g!

rot
C (B

!
f )"/#,

respectively (Fernando, Chen & Boyer 1991).
Maxworthy & Narimousa (1994) introduced a natural Rossby number with a

slightly different form from that in equation (1) : Ro*¯ (B
!
}f $H # )"/# (equal to Ro$/#).

From observations of large-scale flow features they found that beneath a transition
depth, given by Z

C
E (12.7³1.5) (B

!
}f $)"/#, rotation dominates the convective

turbulence, resulting in the formation of vertical vortices underneath the source of
buoyancy. Non-dimensionalizing this depth by the fluid depth H gives a critical value
of Ro$"/#

crit
¯ 0.28. However, in a recent paper Coates & Ivey (1997), using direct

measurements of the small-scale turbulent velocity and temperature fields rather than
observations of large-scale flow features, found Z

C
E (35³15) (B

!
} f $)"/#, from which it

follows that transition from rotationally affected to rotationally controlled turbulence
occurs in the range 0.14%Ro$"/#

crit
% 0.22.

The processes following the onset of the convective forcing can conveniently be
separated into three different stages : initially, pure convective overturning; secondly,
the onset of lateral exchange; and finally, the steady state, characterized by the fact that
the density contrast between the convecting and ambient fluids is no longer changing
with time. In the following section, these three stages will be described. The distinctions
between these different stages can be defined by considering the buoyancy flux B

SW

through the cylindrical surface bounding the actively stirred convecting region: in the
convective overturning stage B

SW
¯ 0, the second stage is defined by 0! rB

SW
r! rB

!
r,

while the final steady state is reached when rB
SW

r¯ rB
!
r.

2.1. Con�ecti�e o�erturning

For some time immediately after the start of the buoyancy forcing, there is no exchange
between the volume directly below the cooled surface (the convecting or forced region)
and the exterior ambient fluid, so that the average temperature T in this volume
(V¯πR#H ) decreases due to the extraction of heat at the surface over area
A (¯πR#) according to

FA∆t¯Q¯ ρC
p
V∆T, (2)
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with Q the total heat extracted from the fluid in time ∆t. For constant forcing B
!
the

average temperature in the mixed layer decreases linearly with time, independent of
either rotation rate f or size of forcing region R, according to

g«¯ gα∆T¯
B

!
t

H
, (3)

where we have used the definition of B
!
stated above equation (1). Note that this also

describes the temperature decrease of the fluid if the volume below the cooled surface
is bounded by insulating sidewalls, as for example in the experiments of Coates &
Ivey (1997) (although the time dependency of the temperature measurements is
not discussed in this paper) and some initial experiments of Brickman (1995, see his
figure 6).

The time scale characterizing this convective overturning stage is given by the time
it takes for a fluid parcel with a typical convective (vertical) velocity (B

!
H )"/$ to be

displaced over the vertical length scale H :

t
co

CH}(B
!
H )"/$¯ 0H#

B
!

1"/$ (4)

and is therefore independent of f.

2.2. Onset of lateral exchange

Owing to the increasing lateral temperature (density) difference and hence the
increasing available potential energy, the flow field will become baroclinically unstable
and some lateral exchange occurs between the convected and ambient regions.
Previous studies (Legg & Marshall 1993; Ivey et al. 1995; Coates et al. 1995; Raasch
& Etling 1997) have shown that this exchange is governed by the onset of baroclinic
instabilities around the edge of the convected region. In the shelf and slope geometry
and when the horizontal extent of the forcing region is at least as large as the width of
the shelf, the initial lateral exchange will be formed by an outflow of dense water onto
the sloping bottom. Mory et al. (1987), Whitehead et al. (1990) and Hill (1996), among
others, have described how this outflow induces a strong cyclonic motion in the initially
quiescent upper layer of ambient fluid. Furthermore, the background potential
vorticity gradient due to the presence of the slope will influence any cross-slope
movement of fluid columns, possibly resulting in an along-slope flow (see also Lane-
Serff & Baines 1998). This mechanism constitutes a major difference from constant-
depth models, in which there is no inhibition of the tendency for the baroclinic eddies
to move away from the convected region, for example.

In this phase of development, some heat is exchanged between the convecting and
ambient regions due to the presence of the developing baroclinic eddies. Since not all
the surface heat loss is compensated, the average temperature of the fluid in the
convecting region continues to decrease, as in the first stage, although this now occurs
at a reduced rate than given by (3).

The baroclinic eddies are characterized by a length scale of the order of the Rossby
radius of deformation, given by

R
D

¯
(g«H )"/#

f
. (5)

Note that since g« is still increasing with time, so is the typical eddy size. The efficiency
with which the entire convected region can be ‘swept clean’ by the baroclinic processes
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depends on the size of the eddies relative to the size of the cooled surface R during this
intermediate stage. When R

D
is relatively large (e.g. for low rotation rate), a large

portion of the convecting region is directly affected by the eddy transports and it can
therefore be expected that the average temperature in the forced region will not
decrease much further before a steady state is reached. However, for small values of
R

D
}R (for example in the case of strong background rotation), only a narrow band of

width R
D

around the edge of the forced region is directly affected by the eddy motions
at this stage. The inner portion of the fluid below the cooled surface is effectively
screened off from the ambient fluid by the ring of baroclinic eddies, generated at the
periphery, and the temperature of this core fluid can continue to decrease for some
time. These processes will continue until a balance is reached between the energy loss
through the surface and the lateral heat flux into the convected region effected by the
baroclinic eddies. The final value of the temperature difference between the forced
(mixed) region and the quiescent ambient region, reached at the start of the steady
state, must therefore depend on the strength of the background rotation, as for
example found by Jones & Marshall (1993) and Send & Marshall (1995), but contrary
to the results of for example Brickman (1995), Legg, Jones & Visbeck (1996) and
Visbeck, Marshall & Jones (1996).

Here we will simply state that any f-dependency of the final density difference (the
density difference reached at the end of this transient state) for a fixed slope angle φ is
a result of the governing dynamics during the transient state of the convection process.
Then suppose that at the end of this transient state the final density anomaly can be
described by

g!
f
CBα

!
f βRγH δ (6)

with the restrictions (from dimensional analysis)

3αβ¯ 2, (7)

2αγδ¯ 1. (8)

A time scale τ can then be defined as the point on the time axis of a g« vs. t graph at
which the linear increase with time (during the convective overturning state) crosses the
horizontal line of the value of g!

f
(see also Brickman 1995). It follows from equations

(3) and (6) that
τCBα−"

!
f βRγH δ+" (9)

which gives an indication of the time at which steady state is reached.

2.3. Steady state

At steady state, the energy loss through the surface will be completely compensated by
the heat flux through the sidewalls of the convecting region (the chimney). The energy
balance is then expressed by (see e.g. Visbeck et al. 1996)

B
!
πR#¯ n&H

!

&
λ

!

�«g«dsdzC nλH�«g« ¯ 2πRH�«g«, (10)

where n is the number of eddies around the circumference of the chimney, λ is the
wavelength of the baroclinic eddies (¯ 2πR}n), �«g« is the lateral eddy-driven buoyancy
flux, s is the path length around the circumference and z is the vertical coordinate.
From (10) we see that

�«g«C
B

!
R

H
. (11)
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Visbeck et al. (1996) and Whitehead, Marshall & Hufford (1996) assumed that the
velocity scale in (11) is of the order of the internal wave speed, i.e. �«g«C (g«H )"/#g« or,
in the stratified case, �«g«CNhN #h¯N $h#, where N is the buoyancy frequency of the
(undisturbed) background stratification and h the instantaneous depth of the
convecting layer. Coates et al. (1995) have shown that the characteristic mean velocity
of the rim current is equal to this wave speed. However, it is not obvious why the eddy
velocity characterizing the exchange process normal to the direction of this mean flow
in the rim current should be of the same order of magnitude as the mean flow itself,
even in a flat bottom geometry. Furthermore, in the case of a shelf and slope
topography, the characteristic velocity for the lateral exchange could be influenced by
the strength of the cyclonic circulation generated in the upper layer by the dense
outflow onto the slope (Mory et al. 1987 and Lane-Serff & Baines 1998). In general,
we can parameterize the lateral buoyancy flux at steady state by the product of the
velocity scale of the radial flux across the frontal position r¯R and the bulk density
difference between the convecting and ambient fluids in steady state

�«g«C �
flux

g!
f
. (12)

Then, using (6), (11) and (12), �
flux

can be described as

�
flux

CB"−
α

!
f −βR"−

γH−"−
δ. (13)

We now set out to describe the experimental setup and results, carried out to quantify
some of the above predictions, in particular (6), (9) and (13).

3. Physical model

3.1. Setup and experimental parameters

The experiments were performed in a cylindrical tank with radius R
tank

¯ 0.48 m,
mounted on a rotating table (figure 1). For experimental convenience, the fluid was
heated from below rather than cooled from above. The tank was fitted with a false
bottom with built-in circular copper plate of radius R¯ 0.20 m that acted as a heat
exchanger. The plate could be heated by pumping relatively hot fluid from a constant-
temperature bath through a circuit of pipes built into the copper plate. The plate was
insulated on the sides and the bottom, so that heat could only escape through the top
surface. The heat flux F (and therefore the buoyancy flux B

!
) was measured from the

temperature drop and volume flow rate of the fluid passing through the heated plate.
Thermistors were placed at the inlet and outlet ports of the heat exchanger to determine
the temperature drop, while a rotor-type flowmeter was used to monitor the (constant)
volume flow rate. With this system, the heat flux could be determined with an accuracy
of about 6%. Errors in the values of the buoyancy flux are somewhat larger (up to
10%), mainly because of the sensitivity of the thermal expansion coefficient to
temperature changes.

The working section of the tank was closed with a model of a shelf and slope (slope
angle φ¯ 28°). The radius of the shelf region was equal to the radius of the heat
exchanger, so that the shelf break coincided with the edge of the heat exchanger. The
vertical position of the lid could be varied in order to change the height H of the fluid
column below the shelf. Finally, the cylindrical tank was surrounded by a slightly
larger octagonal one (not shown in figure 1), with the volume between the two tank
walls filled with water at the same temperature as the water in the working section
(approximately room temperature) to minimize optical distortion through the curved
wall of the working tank.
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F 1. Sketch of experimental setup.

Experimental
number

B
!

(m# s−$)
f

(s−")
H

(m)
Ro
(®)

Ro
R

(®)
∆T

final

(°C)
R

D

(m)
Mode

number

5 1.60¬10−' 0.424 0.08 0.149 0.151 1.4³0.3 0.039 5
6 1.65¬10−' 0.212 0.08 0.300 0.257 1.0³0.2 0.066 3
7 1.53¬10−' 0.322 0.08 0.193 0.184 1.51³0.26 0.051 5
8 1.67¬10−' 0.100 0.08 0.639 0.452 0.65³0.24 0.111 2
9 1.21¬10−' 0.504 0.08 0.113 0.124 1.29³0.24 0.032 7

10 1.59¬10−' 0.100 0.04 0.999 0.447 1.04³0.27 0.099 2
11 1.61¬10−' 0.300 0.04 0.334 0.196 2.29³0.43 0.050 5
12 1.45¬10−' 0.500 0.04 0.193 0.130 2.93³0.40 0.034 6
14 1.57¬10−' 0.402 0.04 0.247 0.157 2.56³0.47 0.039 6
15 1.60¬10−' 0.640 0.04 0.157 0.111 3.43³0.57 0.027 7
16 1.87¬10−' 0.210 0.04 0.501 0.267 1.84³0.37 0.064 3
17 9.29¬10−( 0.900 0.04 0.092 0.075 2.85³0.50 0.018 10
18 1.64¬10−' 1.204 0.04 0.083 0.070 4.68³0.80 0.017 11
19 1.17¬10−' 0.424 0.08 0.134 0.140 2.13³0.31 0.041 5
20 1.21¬10−' 0.634 0.08 0.091 0.104 2.55³0.31 0.030 8
21 1.16¬10−' 0.900 0.08 0.063 0.079 3.19³0.25 0.024 9
22 1.15¬10−' 0.158 0.08 0.357 0.292 1.16³0.18 0.083 3

T 1. Overview of experimental parameters. The radius of the forcing region R¯ 0.20 m and
the slope angle φ¯ 28° is the same for all experiments
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(a)

(b)

(c)

F 2. Three examples of eddy patterns generated at the edge of the convecting region.
Approximately half of the working tank is shown. The edge of the convecting region is indicated by
the white semicircle. (a) Experiment 18 at t¯ 1859 s (¯ 178T ) and z¯ 0.02 m, with typically 11 eddies
around the circumference. (b) Experiment 12 at t¯ 215 s (¯ 8.6T ) and z¯ 0.02 m, with six large
eddies around the circumference. (c) The same experiment as in (b), but now at t¯ 1145 s (¯ 43.2T )
and at z¯ 0.01 m. Experiment parameters are listed in table 1.
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F 3. Wavelength of baroclinic instabilities as function of the Rossby radius of deformation:
temporal values for two experiments and steady-state values for all experiments. The solid line is a
best fit, indicating λ¯ (5.9³0.3) R

D
(correlation coefficient¯ 0.921).

Before the start of an experiment, the working fluid was brought to solid-body
rotation (rotation rate f ). At time t¯ 0, the experiment was initiated by pumping warm
water of a constant input temperature through the heat exchanger, thus supplying a
buoyancy flux B

!
to the working fluid. The flux B

!
was measured and essentially

constant after an initial adjustment period of about 50 s. Measurements showed that
after the adjustment period the buoyancy flux decreased slowly due to the decreasing
temperature difference between the heated plate and the convecting fluid. This
exponential decrease resulted in a typical drop of 10% in the period 100–500 s and a
further 4% in the period 500–1000 s. The values in table 1 are the average values for
the period 100–1000 s. As discussed above, the problem is determined by a set of five
initial parameters (B

!
, f, R, H and φ), as indicated in figure 1. In the present set of

experiments, f and H have been systematically varied (see table 1) to obtain a large
range of values for the Rossby number Ro.

3.2. Measurement techniques

A set of six thermistors was used to monitor the temperature at fixed radial locations
R

therm
¯ [0.15, 0.20, 0.25, 0.30, 0.35, 0.40] m for experiments 5–18. For experiments

19–22 the thermistor positions were R
therm

¯ [0, 0.05, 0.10, 0.15, 0.20, 0.40] m to obtain
a higher spatial sampling density in the actively convecting region. The thermistors
could either be used in continuous mode at a sampling frequency of 2 Hz or in a
profiling mode at traversing speed 10 cm s−" and sampling at 100 Hz. When operating
in continuous mode, each thermistor was positioned at 1.0 cm below the lid at that
particular radius for experiments 5–18 (see figure 1). For experiments 19–22, all
thermistors were located 5 cm above the bottom of the tank.

To obtain quantitative information on velocity fields, the fluid was seeded with
neutrally buoyant particles for experiments 14 and following. Illumination of the fluid
in either a horizontal or vertical plane was achieved by the use of a thin sheet of laser
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F 4. For caption see facing page.
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light. The height of the horizontal sheet could be varied continuously during the
experiment, while the vertical light sheet always passed through the centre of the tank.
The motion of the fluorescing particles was recorded by a CCD video camera and
stored on a S-VHS video tape. Detailed velocity measurements could then be made
using the PIV technique implemented by Stevens & Coates (1994) and described in
more detail by Coates & Ivey (1997). Further qualitative information on the flow
patterns was obtained by injecting fluorescent dye in the convecting region, either prior
to or during the experiment.

4. Results

4.1. Obser�ations of the de�eloping flow field

Following the onset of the buoyancy forcing, a mixing layer starts to grow above the
heated plate and fills the volume above the forcing area on a time scale given by (4).
The range of Rossby numbers Ro corresponded to values for Ro*"/#, as defined by
Maxworthy & Narimousa (1994), between 0.13 and 1.00 (see also table 1). However,
no vertical vortices were observed to form above the mixing layer, indicating that for
Ro*"/#E 0.15 the convection is still not controlled by rotation. This is consistentwith the
higher value of the constant for the critical depth relation (see §2) as found by Coates
& Ivey (1997). So all our experiments were performed in the regime where rotation
does not control the turbulent convection itself. Initial lateral exchange processes are
then generated, marked by a radial outflow at the top of the mixed layer (at the shelf
break) and a radial inflow at the base (see Raasch & Etling 1997 for a detailed
description of these radial fluxes in a stratified fluid). The radial outflow of buoyant
fluid over the slope develops into an anticyclonic rim current due to the background
rotation, as in the experiments of Coates et al. (1995) and Ivey et al. (1995). The rim
current quickly becomes unstable to baroclinic instabilities, resulting in the formation
of a regular pattern of more or less isolated lenses of buoyant fluid over the slope. This,
in turn, generates strong cyclonic motions in the initially quiescent ambient fluid (Mory
et al. 1987; Whitehead et al. 1990). Contrary to the numerical results of Gawarkiewicz
& Chapman (1995), the buoyant lens}cyclone pairs do not move down the slope, but
exhibit along-slope motion (with the shallow water to their right) and the whole pattern
precesses anticyclonically around the edge of the heated plate for the duration of the
experiment. Some examples of the cyclonic baroclinic eddies containing convected fluid
are shown in figure 2. These examples show clearly that (i) the eddy size depends on
the Coriolis parameter (compare figures 2a and 2b) ; (ii) the eddies do not detach from
the shelf break and upper slope region; and (iii) the eddies are coherent over very long
times (compare figures 2b and 2c, taken from the same experiment at respectively 8.6
and 43.2 rotation periods after the start of the buoyancy forcing).

The wavelength of the baroclinic eddies is a function of the Rossby radius (cf. Coates
& Ivey 1998), which in itself evolves in time as it is determined by the value of the
lateral temperature difference and hence the density anomaly between the developing
mixing layer and the ambient. In figure 3, the instantaneous wavelengths measured

F 4. (a) Continuous time series of temperature rise above the heated plate for experiments with
Coriolis parameter f (in s−") as indicated: - - - -, exp. 10; [[[[[[, exp. 11; ——, exp. 15; -[-[-, exp. 18.
(b) Close up of the first 350 s for the same experiments as in (a). The straight line, with an inclination
of B

!
}gαH, is included for comparison. (c) Temperature time series for experiments 22 (- - - -), 19

([[[[[), 20 (——) and 21 (-[-[-) with modified radial positions of the thermistors, as described in §3.
All data are 30 s running averages of the original thermistor readings to filter the highest frequencies.
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during two experiments are plotted against the instantaneous values of the Rossby
radius, as well as the steady-state values of all experiments. The correlation is apparent
and the least-squares fit results in

λ¯ (5.9³0.3)R
D

(14)

which agrees well with the result of Brickman (1995), who found a constant of 5.7³0.9.
The numerical experiments of Gawarkiewicz & Chapman (1995) indicate a constant of
proportionality of approximately 5, similar to the one found by Jones & Marshall (see
figure 10 in Coates & Ivey 1998). An experimental study investigating the collapse of
a chimney of dense fluid and the subsequent break-up into baroclinic eddies presented
by Saunders (1973) indicated a constant of 4.3³0.8. So all these results confirm a
constant of proportionality of order 5. However, as one reviewer pointed out, related
experiments by Mason (1975) and Bastin & Read (1997) indicated that the size of
baroclinic eddies over a slope might increase compared with eddies in the constant-
depth case. The slightly higher value for the present experiments might be an indication
of this effect. All the above mentioned studies were run with initially homogeneous
fluid. In contrast, a number of studies with initially linear density stratification have
been conducted, where the definition of R

D
is now given by R

D
¯Nh

max
}f, with N the

buoyancy frequency of the initial (linear) stratification and h
max

the steady-state value
of the depth of the convecting layer. Coates et al. (1995) found a value for the constant
of proportionality of 1.5³0.5, Whitehead et al. (1996) give the constant as 2.3, Coates
& Ivey (1998) found 1.6 and the numerical model of Raasch & Etling (1997) indicated
a value of 1.52. While dynamically similar processes occur, there are thus differences
in the constant of proportionality relating λ and R

D
for the unstratified and stratified

cases.
4.2. Temperature measurements

The three stages in the response of the convecting fluid, as described in §2, can be
identified in figure 4(a, b), where the temperature rise over the heated plate is shown
for four different values of the Coriolis parameter (experiments 10, 11, 15 and 18).
Figure 4(b) shows in detail the first 350 s of the data plotted in figure 4(a). The data
are all from thermistor measurements inside the convecting region (at 5 cm from the
edge of the heated plate) and are smoothed with a running average over 30 s to
eliminate the highest frequencies. In addition, we show in figure 4(c) temperature data
from experiments 19–22 in which more thermistors were located in the convecting
region (see also figure 5c further below). The data in figure 4(c) are the averaged
readings of the thermistors at radial locations 0, 5 and 10 cm from the tank centre.

Three features are clearly seen in figure 4. First, and particularly clear in figure 4(b),
is the initial linear increase of temperature with time during the state of convective
overturning (the solid line with slope B

!
}gαH, see equation (3), is included for

comparison). Secondly, the time at which the temperature signal starts to deviate from
the linear increase clearly depends on the rotation rate. Finally, figures 4(a) and 4(c)
show that the final value of the steady-state temperature difference is f-dependent and
in fact increases with increasing f. This qualitative observation confirms earlier work
on shelf convection by Sugimoto & Whitehead (1983) and Whitehead (1993), but is
different from the constant-depth models of for example Brickman (1995), Visbeck et
al. (1996) and recent work by Narimousa (1997) who all concluded that the steady-
state density anomaly is f-independent. The quantitative aspects of this important
result will be discussed further below.

Figure 5 shows examples of time series of the individual thermistor data for three
experiments with different rotation rates (figure 5a : exp. 10, f¯ 0.100 s−", figure 5b :
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exp. 12, f¯ 0.500 s−" and figure 5c : exp. 21, f¯ 0.900 s−"). Recall that for experiments
10 and 12 only thermistor 1 (upper left panels in figures 5a and 5b) is located inside
the convecting region. The wavelike variability in the signals is caused by the
background precession motion of the eddy pattern. At one moment, the radial line
along which the thermistors are positioned intersects a part of an eddy where the flow
is directed out of the convecting region and so the measured temperature is relatively
high. Some time later, the thermistor line intersects the other side of the eddy, where
the flow is radially inward and relatively cold ambient fluid is drawn into the
convecting region. Figure 5(b) shows a higher variability than figure 5(a), which is
caused by the different number of eddies around the circumference of the forced region
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(see table 1). Figure 5(c) is included to show that (i) well inside the convecting region,
the temperature measurements are independent of the radial position (thermistors
1–4), and (ii) the temperature of the ambient fluid does not increase significantly during
the experiment (thermistor 6).

In figure 6 we plot the arrival time of convected fluid at each of the thermistors for
the experiments with R}H¯ 5. It is defined as the time of the first temperature increase
registered at each thermistor since the start of the forcing. The arrival time increases
considerably for higher background rotation, indicating that the rotation restricts the
initial outflow onto the slope. This figure also confirms that the strength of the
background rotation does not influence the growth of the mixed layer above the heated
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F 5. Three examples of the continuous temperature output of the thermistors at radial and
vertical positions as indicated: (a) exp. 10, f¯ 0.100 s−", (b) exp. 12, f¯ 0.500 s−" and (c) exp. 21,
f¯ 0.9 s−". Thermistor positions are indicated above each of the panels. The arrow in the sixth panel
of (a) indicates the arrival of convected fluid at that particular thermistor location.

plate in the early stages of the experiments (the convective overturning regime) since
the arrival times of the thermistors at r¯ 0.15 and 0.2 m are constant over the range
of the experiments. This is confirmed by the arrival times for experiments 19–22, where
five of the six thermistors were positioned inside the convecting region (see figure 5c).

From the measurements of the temperature over the heated plate, we can estimate
the steady-state value of the temperature (density) difference between the convecting
and ambient regions. For each thermistor the temperature difference is defined as the
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F 6. Arrival times for convected fluid as function of the radial position of each thermistor for
the Coriolis parameter (in s−") as indicated. Only experiments with R}H¯ 5.0 are included.

temperature rise from the initial value since at t¯ 0 the temperature is uniform
throughout the tank and the change in temperature of the ambient fluid is negligible
for the duration of the experiment, which is confirmed by panel 6 (bottom right) of
figure 5(c). The steady-state temperature difference was determined by taking the
average of the temperature signals (such as depicted in figures 4a and 4c) after the flow
had reached steady state. The start of this period was estimated by eye. For a few
experiments a more quantitative check was made by calculating an average temperature
difference over various portions of the steady-state period. Providing the averaging
period was long compared with the variability in the temperature signal due to the
baroclinic eddies, these independent estimates yielded the same results. The values
listed in table 1 are therefore the averages over the entire steady-state period.

Figures 4–6 already give an indication that the steady-state density anomaly will
depend on the strength of the background rotation. These and other experimental
results are shown in figure 7(a–c) in which g!

f
is plotted against f. Each subplot

comprises a set of experiments in which typical values of B
!

were 4¬10−) m# s−$ in
figure 7(a), 3¬10−( m# s−$ in 7(b) and 1.5¬10−' m# s−$ for the experiments of figure
7(c). In each plot a line with slope 0.5 is included for comparison. The data, which
cover experiments where B

!
varies over two decades, clearly show that g!

f
C f "/#, at least

for large enough values of f (see below).
In the present experiments the range of R}H values is too limited to make any

definitive conclusions about the dependence of g!
f

on R}H. Inclusion of the data of
Sugimoto & Whitehead (1983), Whitehead (1993) and the numerical model results of
Chapman & Gawarkiewicz (1997), however, extends the range of R}H values over two
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!
! 6.4¬10−) m# s−$ and R}H¯ 18; (b) data from Whitehead

(1993), with B
!
¯ 2.7¬10−( m# s−$ and R}H¯ 2.8 and (c) present data, with 0.9¬10−'!B

!
!

1.9¬10−' m# s−$ and values of the aspect ratio R}H as indicated. The solid line in each of the subplots
has a slope of 0.5.

decades. Figure 8 shows that the best fit line through this extended set of data has a
slope n¯ 1.01³0.04. In summary, the present results suggest a best fit of the form

g!
f
¯ (1.6³0.2) (B

!
f )"/# (R}H )". (15)

It then follows from (6)–(9) that the steady-state time scale can be described by
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0.728).

τC ( f}B
!
)"/#R. In figure 9 we plot the experimental steady-state time, estimated from

figures such as 4(a, c), against this prediction. The best fit line suggest a constant of
proportionality of 3.1³0.5, so that we find

τ¯ (3.1³0.5) ( f}B
!
)"/#R. (16)

Finally, we note from figure 7(b) that the data for f! 0.1 s−" show little sensitivity to
changes in the Coriolis parameter f. These results can be interpreted as follows:
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suppose that for a critical value f¯ f
C
, the Rossby radius is so large that only one

‘wave’ fits around the circumference of the forcing area. Clearly, for experiments for
which f! f

C
, the wavenumber must stay equal to 1. From equation (14), our

experiments indicate 5.9R
D

¯ l}n, with l the length of the shelf break. For the present
experiments, l¯ 2πR, so that R

D
ER}n, which, for n¯ 1, indicates that when R

D
is

larger than the length scale R, the horizontal exchange processes can no longer be
described by the above scaling arguments. This is indeed the case for the experiments
with the two lowest rotation rates in Whitehead (1993). In that situation, one would
expect the non-rotating scaling arguments of Sturman & Ivey (1998) to hold. Their
equation (26) suggests

g!
f
¯ 5 0B#

!

H1
"/$ 0RH1

#/$

(17)

which predicts g!
f
¯ 8.5¬10−% m# s−" for Whitehead’s (1993) low-rotation experiments

and compares well with the measured value of the density anomaly in figure 7(b) of
11.0¬10−% m s−#. Note from table 1 that R

D
was always much smaller than R

(¯ 0.20 m) so that this non-rotating limit is never achieved in our experiments.



42 P. Jacobs and G. N. I�ey

4.3. Velocity measurements

From equations (12) and (15), �
flux

, the characteristic velocity scale within an eddy at
steady state, must then be given by

�
flux

C (B
!
}f )"/#. (18)

Note that this is independent of H, which seems plausible since in steady state the
eddies at the rim of the convecting region are in good approximation two-dimensional.
Velocity measurements have been made during three experiments to check the validity
of (18). The measurements are made from the recordings of particle motions
illuminated by a vertical light sheet, viewed from the side of the tank, so that only the
radial component of the velocity field is measured. The underlying precession motion
of the eddy pattern allows us to measure the typical radial velocity of the eddies when
they move through the vertical light sheet. Two examples of a flow field obtained from
the PIV measurements during one experiment are given in figure 10. Around the shelf
break (at r¯ 200 mm), the flow is coherent over the full depth and in figure 10(a)
radially outward, while in figure 10(b) ambient fluid moves into the convecting region.
From such vector patterns, the horizontal component of the velocity is averaged over
a radial extent of the order of the Rossby radius of deformation (centred around the
edge of the heated plate) and over the full depth. Results are given in figure 11(a–c) and
in table 2 for measurements made when the flow is well into steady state.

The figures show the characteristic radial velocity of the flow induced by a cyclonic
eddy as it moves through the thin vertical light sheet. Root-mean-square values are
calculated over at least one full period of the signal and compared with equation (18)
in table 2. While there is a limited range of f-values, the results clearly show a strong
dependence on f and suggest that the functional form of (18) can be quantified as

�
flux

E 1.2 (B
!
}f )"/#. (19)

It is clear from observations of the convecting region that for these long time scales the
exchange between the convecting and ambient fluids is accomplished not by simple
advection but rather by an eddy diffusion process. This suggests the following simple
model. Suppose that the instability processes on the edge of the convected region affect
the complete volume of convecting fluid on a diffusive time scale τ

D
, given by

τ
D

CR#}K (20)

with K a diffusion coefficient, characterized by the product of a typical eddy velocity
and length scale. If we represent the velocity scale by the eddy velocity �

flux
from (19)

and the length scale as the radius of the forcing region R (the maximum length scale
the eddy field can attain, e.g. Kundu 1990), then

KC �
flux

RC (B
!
}f )"/#R (21)

so that (20) can be written as
τ
D

C ( f}B
!
)"/#R (22)

which is exactly our expression (16) for the steady-state time τ.
The velocity observations show a distinct ‘wavelike’ behaviour, as a result of the

regularity of the array of eddies around the edge of the convected region (see figure 2).
The period of this signal can be combined with the wavelength of the eddies to estimate
the precession speed of the eddy pattern. In contrast to the characteristic radial velocity
induced by the eddies, the precession speed is independent of rotation rate and can be
scaled with the estimate of the rim current velocity (B

!
R)"/$ (e.g. Visbeck et al. 1996)

�
prec

E 0.5 (B
!
R)"/$. (23)
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F 11. Results of radial velocity measurements during steady state for (a) exp. 17, f¯ 0.900 s−",
(B

!
}f )"/#¯ 1.02 mm s−" ; (b) exp. 14, f¯ 0.402 s−", (B

!
}f )"/#¯ 1.98 mm s−" ; and (c) exp. 16,

f¯ 0.210 s−", (B
!
}f )"/#¯ 2.98 mm s−". Solid lines are polynomial fits to the measurements. Measure-

ments started at t¯ 2.1τ, 3.8τ and 1.8r for (a), (b) and (c), respectively. Flow out of the convecting
region is taken positive. The graphs are drawn on the same axes for easy comparison.

Experimental
number

f
(s−")

(B
!
}f )"/#

(ms−")
(�«)# "/#

(ms−")

(�«)# "/#

(B
!
}f )"/#

Period
(s)

λ
(m)

�
prec

(ms−")

�
prec

(B
!
R)"/$

14 0.402 1.98 10−$ 2.57 10−$ 1.30 60.3 0.209 3.47 10−$ 0.52
16 0.210 2.98 10−$ 3.82 10−$ 1.28 115.0 0.419 3.64 10−$ 0.54
17 0.900 1.02 10−$ 1.05 10−$ 1.03 38.5 0.126 3.27 10−$ 0.48

T 2. Results of velocity measurements (see figure 11)

The present method provides us with information on the typical radial component of
the velocity field only, which results in data that are independent of the strength of the
underlying (azimuthal) precession velocity. This is particularly relevant, since the
precession velocity is of the same order of magnitude as (and, with the present choice
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of parameter values, mostly larger than) the eddy velocity scale �
flux

. The above
arguments show that there are two velocity scales to be considered: the eddy-induced
radial velocity �

flux
, responsible for the exchange of heat and mass between the

convecting region and the ambient, which depends on the rotation rate f ; and the
precession velocity �

prec
which scales with the rim current velocity and is therefore

independent of f.

5. Discussion and oceanographic applications

The above arguments indicate that the Rossby number, as defined in equation (1),
is insufficient to distinguish between the non-rotating and rotation-dominated
regimes, because it does not incorporate the horizontal scale of the forcing region R.
A better measure is the ratio of the Rossby radius of deformation to the radius of the
forcing region R which, using (15), can be expressed as

Ro
R

¯
R

D

R
¯

(g!
f
H )"/#

fR
¯ 0 B

!

f $R#
1"/%. (24)

Note that this coincides with the square root of the conventional Rossby number (see
§1), but now based on the radius of the convected region rather than the fluid depth
(see also Maxworthy 1997 and Narimousa 1997). The present results, together with the
data from Sugimoto & Whitehead (1983), Whitehead (1993) and Chapman &
Gawarkiewicz (1997) are plotted in figure 12 as a function of Ro

R
(see also table 1). The

density data have been non-dimensionalized with the functional form of (15), so
without the numerical constant. This figure indicates that for small values of Ro

R
, the

non-dimensional steady-state density anomaly can be described by equation (15), with
the constant of proportionality ranging between 1.6³0.2 for the present results and
4.5³0.6 for the data of Whitehead (1993). The rather large discrepancy between these
extremes warrants further consideration, perhaps by numerical modelling. The average
for all data with Ro

R
! 0.5 is 3.0³1.2. The transition between non-rotating and

rotationally controlled convection occurs approximately at a critical value of the above
defined Rossby number of Ro

R,C
E 0.5. When Ro

R
is larger than this critical value, the

eddy scale becomes too large with respect to the size of the forcing region R, so that
the radial exchange of fluid and heat no longer takes place by the eddy processes.

Typical oceanographic values of the initial parameters in high-latitude coastal seas
are B

!
¯ 5¬10−) m# s−$ (Schott, Visbeck & Fischer 1993 and Morawitz et al. 1996)

with f¯ 1.4¬10−% s−" and RE 20 km. The value of the Rossby number Ro
R

is
approximately 0.08, well below the critical value above which the influence of the
background rotation is unimportant. Even at lower latitudes, for example for the Golfe
du Lion region in the North-West Mediterranean, a typical value of Ro

R
is around 0.18

(for B
!
¯ 1¬10−( m# s−$, f¯ 1¬10−% s−" and R¯ 30 km), still in the rotation-

dominated regime.
In general, care should be taken in the comparison of model and field data, since all

scaling arguments are based on the assumption that the forcing buoyancy flux is
constant, a situation which is seldom achieved in the field. While the present study is
confined to homogeneous ambients, Coates et al. (1995) demonstrated that the
underlying physics of the processes are much the same in the case of background
stratification. Applying our results to a shelf region of a polar sea with RE 30 km,
HE 200 m which is cooled by a surface buoyancy flux of 5¬10−) m# s−$ gives estimates
of a steady-state buoyancy anomaly (using equation (15)) of the order of 6¬10−% m s−#,
corresponding to a temperature difference of approximately 0.65 °C (with
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F 12. Non-dimensional steady-state density anomaly as a function of the Rossby number Ro
R

for the present experiments as well as for the results of Sugimoto & Whitehead (1983; SW 83),
Whitehead (1993; W 93) and Chapman & Gawarkiewicz (1997; CG 97). Transition from
rotationally controlled convection to the non-rotating regime occurs at Ro

R
E 0.5.

αE 1¬10−% °C−"), achieved over a time scale of 57 days (from equation (16)). The
horizontal scale of the eddy pattern is then of the order of 15 km. Typical eddy-induced
velocities are estimated at 0.023 m s−", while the translation of the eddy field would
occur with a speed of 0.057 m s−". Morawitz et al. (1996) reported on field observations
in the Greenland Sea, a region in which the water column is only weakly stratified.
They found an average temperature change over the upper 2000 m of the water column
on a convective chimney of 0.2 °C, much smaller than our predictions. However, the
temperature difference with the fluid surrounding the chimney is of the order of
0.45 °C, so that the total lateral temperature difference is of the same order as in our
model. Furthermore, figure 10 of Morawitz et al. (1996) shows that the convective
processes reached a steady state over a period of 61 days, from January until mid-
March. During this period, velocities in the upper 100 m were of the order of
0.07–0.10 m s−", roughly equal to the algebraic sum of our estimates of the flux and
precession velocities. Obviously, the field measurements are unable to discern between
these different velocity scales. Unfortunately, the observations of Morawitz et al.
(1996) could not resolve the dominant eddy scales. Gascard & Clarke (1983) observed
eddies in the Labrador Sea under similar forcing conditions with typical length scales
of 17 km, almost exactly matching our prediction. These comparisons show that the
inclusion of the horizontal dimension R of the convective patch is essential in the
estimate of the final density anomaly. Estimates based on simply the rotating scale
(B

!
f )"/# or the non-rotating scale (B#

!
}H )"/$, which ignore any dependence on R,

would result in values that are far too small compared with field data.
The results of the experimental model also allow us to make some predictions on the

time scales that can be expected in oceanic convection events. For example, the
convective overturning time scale is given by equation (4) which gives for a typical shelf
depth H¯ 200 m and B

!
¯ 2¬10−( m# s−$ a period of 2 h. However, our results show

that the onset of lateral exchange occurs on a time scale of several (4–5) overturning
times (equation (4) and figure 4b), so that, in the field, we can expect to see the influence
of baroclinic eddies occurring at around 10 h for the shelf case. Leaman & Schott
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(1991) reported on convective overturning events in the top layers of a convective patch
(with depths in the order of 10 m) that occur on time scales of 1 h. Equation (4), with
the factor 5 and the above value of B

!
gives 1.1 h.

6. Summary and conclusions

Convection in a homogeneous rotating fluid over a model shelf and slope geometry
is studied using a laboratory model. Buoyancy forcing is applied, by heating from
below, to only the portion of the fluid below the shelf. Initially, the effects of the
buoyancy forcing are restricted to the volume of fluid directly above the forcing area.
The mean temperature in this volume increases linearly with time until horizontal
exchange processes start to affect the convective chimney. In this intermediate regime,
part of the heat flux added to the fluid increases the temperature of the fluid above the
forcing area, while the remaining portion is transported out of the convecting region
by cyclonic eddies, which are formed by the response of ambient fluid to the initial
dense outflow over the slope. The cyclonic eddy pattern precesses around the edge of
the forced region, following isobaths with the shallower fluid on its right. Eventually
the lateral heat exchange becomes so efficient, that all the heat input is transported out
of the convective patch, so that a steady state is reached, with no further temperature
increase in the convecting region. The most important result of the present experiments
with the model shelf and slope is the fact that the final (steady state) value of the density
anomaly, the time at which this steady state is reached and the eddy velocity,
responsible for the horizontal exchange of heat and mass between the convected region
and the ambient, all depend on the strength of the background rotation f, as described
by equations (15), (16) and (19), respectively. Furthermore, it is shown that the
wavelength of the baroclinic instability pattern depends linearly on the value of the
Rossby radius of deformation R

D
via equation (14). Finally, the present experiments

were all conducted in the rotationally affected (but not controlled) regime, confirming
the conclusion of Coates & Ivey (1997) that the transition to rotationally controlled
turbulence occurs at Rossby numbers smaller than Ro*"/#E 0.17.

The cyclonic eddies, whose induced velocity field is primarily responsible for the heat
flux between the convecting and ambient regions, stay close to the edge of the
convected region due to the presence of the sloping bottom, even at long times after the
start of the forcing. This is in sharp contrast to the constant-depth experiments of for
example Narimousa (1997), in which the eddies pinch off from the unstable rim current
and can subsequently fill the rest of the working fluid. In the present case, the eddy
pattern precesses around the edge of the convected region. The precession speed is
independent of rotation rate and not simply described by the prediction of Nof (1983),
for example, of the speed of isolated eddies on a sloping bottom C

Nof
¯ g«S}f, with S

the bottom slope.
In the present experiments the edge of the forcing region coincided with the position

of the shelf break. In the field, the length scales of the wind forcing (50–150 km) and
hence buoyancy forcing are often much larger than the width of the continental shelves
(20–50 km). Also, submarine canyons or a coastline intersecting the continental shelf
can both potentially force considerable mean offshore flow. These various effects
should be considered in future (experimental) models. Finally, in the field the buoyancy
forcing will almost always be time dependent and}or spatially non-uniform, yielding
configurations that should also be considered in future modelling efforts.
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